
TradeTrust Tech Webinar Series
Webinar #4

5th Aug 2020

Infocomm Media Development Authority, Singapore

2

• OpenAttestation Document Format

- Document Integrity

- Issuer Identity

- Document Status

• SDK Overview, Code Walkthroughs

- oa-verify

- document-store

- token-registry

- decentralised-renderer-react-components

• Q & A

AGENDA

These Slides

OpenAttestation Document Format

1. Assurance that content is intact
[DOCUMENT_INTEGRITY]

1. Assurance of issuer identity
[ISSUER_IDENTITY]

1. Assurance of Document Status
[DOCUMENT_STATUS]

4

• Valid Document

• Document with unauthorised modifications

• Document with false issuer identity

• Document that was not issued

Document Verification Demo

[DOCUMENT_INTEGRITY]: Concept #1 - Hashes

5

● Represent a document by a unique
colour

● Combining two colours results in a third
colour

● Cannot unmix third colour to determine
which two colours were mixed to
create it

[DOCUMENT_INTEGRITY]: Concept #2 - Merkle Trees, Creation

6

● Example: 4 Documents in batch

● Record “Moderate Red” on the blockchain

● No other colour recorded on the

blockchain

● Each document records the minimum set

of intermediate colours to arrive at

“Moderate Red”

● E.g: Doc #1 will have [“red”, “light red”]

● E.g: Doc #3 will have [“pure pink”,

“purple”]

[DOCUMENT_INTEGRITY]: Concept #2 - Merkle Trees, Verification

7

● Doc #1 records that his sibling is “red”

● His “uncle” is “light red”

● Verification Success!

● Verifier applies algorithm to given

document contents and arrives at “cobalt”

● “cobalt” + “red” = “purple”

● “purple” + “light red” = “moderate red”

[DOCUMENT_INTEGRITY]: Concept #2 - Merkle Trees, Falsification

8

● Doc #1 records that his sibling is “red”

● His “uncle” is “light red”

● Doc #1 modified and integrity affected

● Verification Failed!

● Verifier applies algorithm to given

document contents and arrives at “green”

● “green” + “red” = “orange-brown”

● “orange-brown” + “light red” = “strong

orange”

[DOCUMENT_INTEGRITY]: Document Format

9

"signature": {
"type": "SHA3MerkleProof",
"targetHash": "6f8b1ffc45aa9b5b92b105dfa172c163d29de3e680750eae5e1de7b307483b79",
"proof": [
"649879f5c8d26e455e30aa8064b01bef142c29cc8c387b409e9467bf31dc00c4",
"51a4fa112637b683dcbc898bad86867d26363a76bd5b0504ae95704ba1f8fddb",
"9d75bcb736099c86ac69312dc2a09ed57baaceaad6a7ffb5df12d8da06b71683",
"066e724d827caca297413e14ea955fd51ccaf37da5719d3dec787cbb6afed00f",
"d281a2430c78da6a48cd3291e10080704af5cc59d635b44613fc396c1a244bfe"

],
"merkleRoot": "14d30e6edff6ab6fc0ff1fa848024343739bd9652229cca041b309e360778567"

}

Issuer Identity Assurance

[ISSUER_IDENTITY]: Concept - Dialing back to confirm identity

11

[ISSUER_IDENTITY]: Concept - Dialing back to confirm identity

12

[ISSUER_IDENTITY]: Document Format

13

"issuers": [
{
"name": "434808bb-73d9-...:string:Demo Issuer",
"documentStore": "630a5665-...:string:0x8bA63EAB43342AAc3AdBB4B827b68Cf4aAE5Caca",
"identityProof": {
"type": "462fcc43-...:string:DNS-TXT",
"location": "8b96e8b5-13f4-...:string:demo.tradetrust.io"

}
}

]

Pop Quiz!

http://etc.ch/B6rD/

Part II - SDK Overview

SDK Overview

16

● oa-verify - Library that takes in document and returns verification results

● document-store - Repository with Document Store smart contract and helpers

● token-registry - Repository with Token Registry smart contract and helpers

● ethers-contracts-hooks - Utility library for using smart contracts in React

● decentralized-renderer-react-components - Library for custom renderers

● dnsprove - Library that returns OA DNS-TXT results for a given domain

● oa-encryption - Library that handles OA Common Encryption

● oa-functions - Infrastructure templates for OA functions such as verify

Open-Attestation/oa-verify Library

17

● A library for verifying Open-Attestation documents (TradeTrust is a subset)

● Has default verification settings, but can also override the defaults to create

your own verifier

● 3 categories of verification (DOCUMENT_STATUS, DOCUMENT_INTEGRITY,

ISSUER_IDENTITY)

● Returns a detailed array of what checks were done and the results

● isValid can be used to summarise the results into whether it passed or failed

● Usable in both Node.js and Browser

Code Walkthrough for oa-verify

18

● Step 0: Barebones page with a text field for you to enter document

data

● Step 1: Set up oa-verify

● Step 2: Call on oa-verify when document data is provided

● Step 3: Parsing verification results

Open-Attestation/Document-Store Library

19

● Repository contains the smart contract source code

● Also has helper functions for deploying and interacting with it

● Can also connect to existing instance and execute methods on it

● Requires you to have Ethers.js provider (and signer if writing)

● Can be combined with Open-Attestation/ethers-contract-hooks

● Usable in both NodeJS and Browser

Open-Attestation/Token-Registry Library

20

● Repository contains the smart contract source code for token-registry and title-escrow

● Also has helper functions for deploying and interacting with it

● Can connect to existing instance and execute methods on it

● Requires you to have Ethers.js provider (and signer if writing)

● can be combined with Open-Attestation/ethers-contract-hooks

● Title Escrow smart contract can be deployed using TitleEscrowFactory

● token-registry is ERC721 compatible, for TradeTrust the owner points to a title-escrow

● Usable in both NodeJS and Browser

Code Walkthrough for Token-Registry

21

● Step 0: Barebones with MetaMask provider

● Step 1: Connecting to Token Registry

● Step 2: Deploying Title Escrow

● Step 3: Minting Token to Title Escrow

● Step 4: Transferring Token to Target

Q&A?

THANK YOU

